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a b s t r a c t

It has recently been reported that any viscously damped linear system can be decoupled

in the configuration space by a real, nonlinear, time-dependent transformation. The

configuration-space decoupling transformation is real, linear and time-invariant when

cast in state space. In addition, the configuration–space transformation generates a

diagonalizing structure-preserving transformation. In non-homogeneous systems, both

the configuration and associated state transformations are nonlinear and depend

continuously on the excitation. An example is given of a linear system that can be

decoupled in configuration but not in state space.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The equation of motion of an n-degree-of-freedom viscously damped linear system can be written as

M €qþC _qþKq¼ fðtÞ, (1)

where for passive systems the mass matrix M, the damping matrix C, and the stiffness matrix K are real, symmetric and
positive definite of order n. The Lagrangian coordinate q and the excitation f(t) are real n-dimensional column vectors.
Unless M, C and K are diagonal, Eq. (1) is coupled, i.e., the ith component equation involves not only qi and its derivatives
but also other coordinates and their derivatives as well. Coordinate coupling presents a considerable challenge to system
analysis and design.

When C=0, Eq. (1) can be readily decoupled by modal analysis, which utilizes a real congruence transformation to
diagonalize M and K simultaneously. If Ca0, the system is said to be classically damped if it can still be decoupled by
modal analysis. Rayleigh [1] showed that proportional damping, for which C=aM+bK, is a particular case of classical
damping. Subsequently, Caughey and O’Kelly [2] established that CM�1K=KM�1C is a necessary and sufficient condition
under which a system is classically damped. There is, of course, no particular reason why this condition should be satisfied.
To be sure, Eq. (1) can always be recast as a first-order equation of dimension 2n in state space. If the eigenvalue problem
associated with the resulting state equation is non-defective, the state equation can be decoupled by complex modal
analysis [3,4]. Upon decoupling, however, the (complex) state variables can no longer be identified as displacements and
velocities. Physical insight is thus greatly diminished. This is an important reason why configuration-space decoupling, if
possible, is truly preferred.
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In two recent papers [5,6], modal analysis was extended to decouple any damped linear systems in configuration space.
The extension is based upon the intuitive process of phase synchronization, which shifts the phase angles in each non-
classically damped mode of vibration so as to transform it into a classical mode. The overall decoupling transformation is
real, invertible, nonlinear and time-dependent in configuration space. How does this time-dependent transformation
operate in state space? What is the state-space interpretation of phase synchronization? A basic objective of the present
paper is to answer these questions. The exposition is organized as follows. In Section 2, the time-dependent decoupling
transformation associated with phase synchronization is concisely reviewed. This configuration-space decoupling
transformation is reformulated in state space in Section 3, with an emphasis on homogeneous systems. In Section 4, it
is shown that the configuration-space decoupling transformation also generates a diagonalizing structure-preserving
transformation in state space. Two examples are given in Section 5, one of which involves a classically damped system that
cannot be decoupled by complex modal analysis in state space. Finally, a summary of findings is provided in Section 6.

2. Decoupling by phase synchronization in configuration space

Based upon a consideration of the physics of damping [5,6], phase synchronization generates a real and invertible
transformation that converts Eq. (1) into

€pþD1 _pþX1p¼ gðtÞ (2)

for which D1, X1 are real and diagonal. The diagonal elements of D1, X1 are simple combinations of the eigenvalues of the
quadratic eigenvalue problem [7–9]

ðMl2
þClþKÞv¼ 0: (3)

There are competing methods for solving the above equation, and many software packages offer built-in functions to tackle
Eq. (3). For example, MATLAB provides the ‘‘polyeig’’ function for solving polynomial eigenvalue problems. While the number of
flops (floating point operations) required for solution of Ku=kMu is 14n3, solution of Eq. (3) involves about 216n3 flops. If each
repeated eigenvalue possesses a full complement of independent eigenvectors, Eq. (3) is non-defective. Under this condition

gðtÞ ¼ TT
1fðtÞþTT

2
_f ðtÞ, (4)

qðtÞ ¼ T1pðtÞþT2 _pðtÞ�T2TT
2fðtÞ ¼ T1þT2

d

dt

� �
pðtÞ�T2TT

2fðtÞ, (5)

where T1, T2 are real square matrices whose elements are simple combinations of the eigenvalues and corresponding
eigenvectors of Eq. (3). In the configuration space, Eq. (5) is a nonlinear time-dependent transformation. A flowchart for fast
decoupling has been presented [6]. The above decoupling process and associated equations reduce to modal analysis if Eq. (1) is
undamped or classically damped.

2.1. Simplifying assumptions

Although Eqs. (4) and (5) have been extended to defective systems [5,6] so that Eq. (1) can be decoupled without
restrictions, this type of generality will be suppressed in the present paper. Unless otherwise stated, it will be assumed that
(a) all eigenvalues of Eq. (3) are complex (with non-zero imaginary parts) and distinct, and (b) f(t)=0. These assumptions
are made to streamline the presentation and, as explained later on, they can be readily relaxed.

2.2. Phase synchronization of free vibration

A homogeneous system can be decoupled by simply compensating for the phase drifts caused by viscous damping in
each damped mode. If the 2n eigenvalues of Eq. (3) are complex, then the eigenvalues lj and the corresponding
eigenvectors vj occur in n pairs of complex conjugates. Let

lj ¼ ajþ ioj, vj ¼ rj1e�ijj1 rj2e�ijj2 � � � rjne�ijjn

h iT
, (6)

where aj, oj, rjk and jjk are real parameters for j, k=1,y,n. In phase synchronization, the kth element of the jth damped
mode is shifted by jjk/oj. The overall result is the conversion of Eq. (1) into Eq. (2) for which

D1 ¼�diag½ljþlj� ¼ �diag½2a1,2a2,:::,2an�, (7)

X1 ¼ diag½ljlj� ¼ diag½a2
1þo

2
1,a2

2þo
2
2,:::,a2

nþo
2
n�: (8)

In addition, when f(t)=0, Eq. (5) becomes a time-shifting transformation defined by

qðtÞ ¼
Xn

j ¼ 1

diag½pjðt�jj1=ojÞ,pjðt�jj2=ojÞ,. . .,pjðt�jjn=ojÞ�zj, (9)
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where zj ¼ rj1eajjj1=oj rj2eajjj2=oj � � � rjneajjjn=oj

h iT
. Each eigenvector vj of Eq. (3) can only be determined up to an

arbitrary multiplicative constant. For convenience, the magnitude of vj may be fixed in accordance with

2ljv
T
j MvjþvT

j Cvj ¼ 2ioj: (10)

The above normalization reduces to the familiar mass normalization vT
j Mvk ¼ djk for an undamped or classically damped

system [10]. If the magnitude and sign of vj are fixed, then Eq. (9) is uniquely defined. In contrast, the coefficients D1, X1 of
the decoupled system, defined in Eqs. (7) and (8), are independent of vj and they remain valid even if f(t)a0.
3. State-space formulation of phase synchronization

What is the state-space version of the time-dependent decoupling transformation (9)? Since physical insight is
diminished due to (complex) state transformations, it would be laborious to recast and interpret in state space every
equation associated with phase synchronization. This is however not necessary. An efficient reformulation is provided if a
trial state-space version of Eq. (9) is first surmised through intuition. The trial version is then validated by rigorous
mathematics.
3.1. Derivation of reformulated transformation

Under the assumption that the eigenvalues lj of Eq. (3) are complex and distinct, the free response of system (1) is

q¼
Xn

j ¼ 1

ðajvje
lj tþajvje

lj tÞ ¼VeKtaþVeKta, (11)

where aj are constants depending on initial conditions and a¼ a1 a2 � � � an
� �T

. In addition, K and V are defined in
terms of lj and vj in Eq. (6) by

K¼ diag½l1,l2,. . .,ln�, V¼ ½v19v29 � � � 9vn�: (12)

The state of Eq. (1) is then given by

q

_q

� �
¼

V V

VK VK

" #
eKt 0

0 eKt

" #
a

a

� �
: (13)

In free vibration, system (1) can be physically excited into a form of oscillation in which all components perform
oscillations with the same frequency oj. This is referred to as a damped mode of vibration, and the mode with frequency oj

can be independently excited by rendering ak=0 for kaj. From Eq. (11), the mode with frequency oj can be written as

sjðtÞ ¼ ajvje
lj tþajvje

lj t ¼ 2eaj tRe½ajvje
ioj t �: (14)

In system (2), free vibration with frequency oj can only be generated by the jth decoupled equation, which has the form

€pj�ðljþljÞ _pjþljljpj ¼ 0: (15)

Phase synchronization shifts the phase angles of the elements of sj(t) but the process does not disturb the coefficients aj.
Hence the solution of Eq. (15) should be

pj ¼ aje
lj tþaje

lj t ¼ 2eaj tRe½aje
ioj t�: (16)

The state of system (2) is therefore given by

p

_p

� �
¼

I I

K K

� �
eKt 0

0 eKt

" #
a

a

� �
: (17)

If Eqs. (13) and (17) are combined, the state transformation

q

_q

� �
¼

V V

VK VK

" #
I I

K K

� ��1 p

_p

� �
¼ T

p

_p

� �
(18)

is obtained. It can be checked that the transformation matrix T is real and nonsingular. Thus the time-dependent
configuration-space transformation (9) becomes a linear time-invariant transformation (18) when cast in state space.
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This surprising result, surmised through intuition, can be readily validated. In free vibration, the state-space versions of
Eqs. (1) and (2) are given, respectively, by

_q

€q

� �
¼

0 I

�M�1K �M�1C

� �
q

_q

� �
¼A

q

_q

� �
, (19)

_p

€p

� �
¼

0 I

�X1 �D1

" #
p

_p

� �
¼ B

p

_p

� �
, (20)

where D1, X1 are defined in Eqs. (7) and (8). Observe that the quadratic eigenvalue problems associated with Eqs. (1) and
(2) have the same eigenvalues with the same multiplicities. In addition, Eq. (3) and the matrix A in Eq. (19) have identical
eigenvalues, and the same is true for the quadratic eigenvalue problem associated with Eq. (2) and the matrix B in Eq. (20).
As a consequence, A, B have the same eigenvalues, i.e., they are isospectral, and each is diagonalizable because lj are
assumed distinct. From linear algebra, two diagonalizable matrices are isospectral if and only if they are similar. It can be
checked by direct manipulations that

T�1AT¼ B, (21)

where T is defined in Eq. (18). Thus Eq. (18) converts Eq. (19) into Eq. (20) through a similarity transformation. The state-
space version of Eq. (9) is indeed Eq. (18).

While Eq. (9) decouples Eq. (1) in configuration space, Eq. (18) does not decouple the state-space version of system (1)
because B is not diagonal. Rather, Eq. (18) operates in such a way that Eq. (19) is converted into Eq. (20), from which the
decoupled system (2) is extracted.

3.2. Relaxation of assumptions

Subject to the simplifying assumptions of Section 2.1, the time-dependent decoupling transformation (9) becomes a
linear time-invariant transformation in state space. It can be shown that the same observation is true for free vibration
under real, complex, or repeated eigenvalues, as long as Eq. (3) is non-defective. If there exist 2rr2n distinct real
eigenvalues, there is an equivalence class of ð2rÞ!=2rr! different forms of D1, X1 associated with the real eigenvalues [6]. For
each member of this equivalence class, the corresponding time-dependent configuration-space decoupling transformation
is equivalent to a linear time-invariant state transformation. When Eq. (3) is defective, Jordan sub-matrices appear in many
formulas associated with decoupling [6]. As a result, both the configuration-space decoupling transformation and its state-
space version are time-dependent.

If f(t)a0, the nonlinear configuration-space decoupling transformation (5) depends continuously on the excitation f(t).
Consequently, its reformulated state-space version also involves f(t). If the eigenvalues of Eq. (3) are complex and distinct,
it can be shown that [6]

q

_q

� �
¼

V V

VK VK

" #
I I

K K

� ��1 p

_p

� �
�

ðV�VÞðK�KÞ�2
ðV�VÞT fðtÞ

ðVK�VKÞðK�KÞ�2
ðV�VÞ

T
fðtÞ

" #
(22)

which is a direct extension of Eq. (18). Finally, phase synchronization can be used to decouple systems with symmetric or
non-symmetric coefficients, provided that M is nonsingular. The observations in this section remain valid when M, C and K
are not symmetric. The decoupling of non-symmetric systems will be taken up in a future paper.

4. Decoupling and structure-preserving transformations

A traditional approach to decoupling, as emphasized by Lancaster [7–9], is to address the problem as a reduction of
the quadratic pencil Q(l)=Ml2+Cl+K. Garvey and others [11–14] recently proposed the powerful notion of
structure-preserving transformations in diagonalizing Q(l). First, Q(l) is cast in state space as a linear pencil in the
form [13]

LðlÞ ¼
C M

M 0

� �
lþ

K 0

0 �M

� �
: (23)

A real equivalence transformation {UL, UR} is then sought which preserves the block structure of the coefficients of L(l) in
such a way that

UT
L LðlÞUR ¼

CD MD

MD 0

" #
lþ

KD 0

0 �MD

" #
, (24)

where MD, CD, KD are real diagonal matrices of order n. Such an equivalence transformation is referred to as a diagonalizing
structure-preserving transformation and, if available, it decouples Eq. (1) in the configuration space.
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Suppose a diagonalizing structure-preserving transformation {UL, UR} has been determined. In free vibration, Eq. (1)
may be expressed in state space as

C M

M 0

� � _q

€q

� �
þ

K 0

0 �M

� �
q

_q

� �
¼ 0: (25)

Define a real state transformation by

q

_q

� �
¼UR

p

_p

� �
: (26)

Then Eq. (25) can be transformed into

CD MD

MD 0

" #
_p

€p

� �
þ

KD 0

0 �MD

" #
p

_p

� �
¼ 0 (27)

from which the decoupled second-order equation

MD €pþCD _pþKDp¼ 0 (28)

is obtained. Structure-preserving transformation is a powerful concept, and numerical algorithms to compute {UL, UR} have
been studied [14–16]. However, these algorithms are generally quite restrictive [14].

It is now asserted that the time-dependent transformation (9) generates a diagonalizing structure-preserving
transformation in state space. Indeed, if the eigenvalues lj of Eq. (3) are complex and distinct, then

UL ¼UR ¼ T¼
V V

VK VK

" #
I I

K K

� ��1

, (29)

where the eigenvectors vj are still normalized in accordance with Eq. (10). It can be verified by direct manipulations that
MD=I, CD=D1, and KD=X1 in Eq. (27). Again, this observation remains true under more general conditions. It can be shown
that Eq. (9) always generates a diagonalizing structure-preserving transformation as long as Eq. (3) is non-defective. In
addition, there are systems that can be decoupled by phase synchronization but not by structure-preserving
transformations. Example 4 in [6] is such a system. If M, C and K are non-symmetric, the related structure-preserving
transformation is an equivalence but not congruence transformation.

5. Illustrative examples

It is widely believed that complex modal analysis can readily decouple in state space any classically damped system. A
counter-example is provided in this section. A second example illustrates the theoretical development presented earlier.

Example 1. A two-degree-of-freedom system of the form (1) is defined by M=I,

K¼
1 0

0 4

� �
, C¼ 2

ffiffiffiffi
K
p
¼

2 0

0 4

� �
: (30)

This damped system is already in a decoupled form, and both modal analysis and phase synchronization reduce to identity
transformation in configuration space. The eigenvalues of the state companion matrix

A¼
0 I

�M�1K �M�1C

� �
¼

0 0 1 0

0 0 0 1

�1 0 �2 0

0 �4 0 �4

2
6664

3
7775 (31)

are l1=�1 and l2=�2 and each is repeated. However, there is only one eigenvector 1 0 �1 0
� �T

associated with l1

and also only one eigenvector 0 1 0 �2
� �T

associated with l2. Therefore, A is defective and cannot be diagonalized. As
a result, the system in this example cannot be decoupled by complex modal analysis in state space. A generalization is
obvious: a classically damped multi-degree-of-freedom system cannot be decoupled by complex modal analysis in state
space if one or more degrees are critically damped.

There should not be any confusion about the role played by structure-preserving transformations: they are state-space
transformations aiming at decoupling systems in the configuration space. From Eq. (29), a diagonalizing structure-
preserving transformation for this example is given by UL=UR=I.

Example 2. Consider a non-classically damped system governed by

1 0

0 1

� � €q1

€q2

" #
þ

0:5 �0:1

�0:1 1

� � _q1

_q2

" #
þ

1 0

0 4

� �
q1

q2

" #
¼

0

0

� �
: (32)
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Solution of the quadratic eigenvalue problem (3) yields

l1 ¼ l3 ¼ a1þ io1 ¼�0:25þ0:97i, v1 ¼ v3 ¼
r11e�ij11

r12e�ij12

" #
¼

1:00e�i0:0002

�0:03e�i1:49

" #
, (33)

l2 ¼ l4 ¼ a2þ io2 ¼�0:50þ1:93i, v2 ¼ v4 ¼
r21e�ij21

r22e�ij22

" #
¼

0:07e�i1:66

�1:00e�i3:14

" #
, (34)

where the eigenvectors have been normalized in accordance with Eq. (10). Phase synchronization converts Eq. (32) into
Eq. (2), for which

D1 ¼�diag½ljþlj� ¼ diag½0:50, 1:00�, (35)

X1 ¼ diag½ljlj� ¼ diag½1:00, 3:99�, (36)

and g(t)=0. The configuration-space decoupling transformation (9) becomes

q1ðtÞ

q2ðtÞ

" #
¼

X2

j ¼ 1

rj1eajjj1=oj pjðt�jj1=ojÞ

Xn

j ¼ 1

rj2eajjj2=oj pjðt�jj2=ojÞ

2
666664

3
777775¼

1:00p1ðt�0:002Þþ0:04p2ðt�0:86Þ

�0:02p1ðt�1:53Þ�0:44p2ðt�1:63Þ

" #
: (37)

From Eq. (18), the state-space version of Eq. (37) is given by

q1

q2

_q1

_q2

2
66664

3
77775¼

1:00 �0:02 �0:00 �0:04

0:01 1:00 0:04 0:00

0:00 0:14 1:00 0:01

�0:04 �0:00 �0:01 1:00

2
6664

3
7775

p1

p2

_p1

_p2

2
66664

3
77775¼ T

p1

p2

_p1

_p2

2
66664

3
77775: (38)

The matrix T above defines a diagonalizing structure-preserving transformation {UL, UR} with UL=UR=T. This
transformation converts Eq. (25) into Eq. (27) for which MD=I, CD=D1, and KD=X1.

6. Conclusions

Several observations about the decoupling of damped linear systems in configuration and state spaces are summarized
in the following remarks:
1.
 In non-defective homogeneous systems, the real, time-dependent, configuration-space decoupling transformation due
to phase synchronization is real, linear and time-invariant when cast in state space. In addition, the configuration-space
decoupling transformation generates a diagonalizing structure-preserving transformation. Neither the state-space
transformation due to phase synchronization nor the structure-preserving transformation decouples the state equation
associated with a second-order system.
2.
 In non-homogeneous systems, both the configuration-space decoupling transformation and associated state
transformation are nonlinear and depend continuously on the excitation.
3.
 There are damped linear systems that can be decoupled by modal analysis or phase synchronization in configuration
space but not by complex modal analysis in state space.
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